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In intermittent dynamical systems, the distributions of local Lyapunov expo-
nents are markedly non-Gaussian and tend to be asymmetric and fat-tailed.
A comparative analysis of the different time-scales in intermittency provides a
heuristic explanation for the origin of the exponential tails, for which we also
obtain an analytic expression deriving from a more quantitative theory. Appli-
cation is made to several examples of discrete dynamical systems displaying
intermittent dynamics.
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1. INTRODUCTION

A variety of diverse dynamical behaviors finds itself classified under the
rubric of the term ‘‘intermittency.’’ (1, 2) The characteristic feature of such
motion is a switching between two distinct states. The classic Type I, II,
and III intermittencies, first described by Pomeau and Manneville (1) involve
the motion alternating between laminar and chaotic states, the distinctions
between these types arising in the scaling exponents for the duration spent
in one or the other state as a parameter is varied. Other forms of intermit-
tency are known (crisis induced, (3) Type V, (4) on-off, (5) in-out, (6) etc.), and
each of these differ in either the nature of the two states between which the
motion switches, or in the nature of the scaling behavior and exponents or
both. In Hamiltonian systems, the dynamics can also display intermittency
if the motion is trapped in the vicinity of KAM islands in the mixed phase
space in quasi-integrable systems; (7) similar effects have been shown also to
give rise to long-time tails in correlation functions in chaotic systems. (8)



Owing to this alternation between (at least) two dynamical state over
long periods of time, global quantities often provide a poor characteriza-
tion of intermittent dynamics. (9) A case in point is the Lyapunov exponent
in Type-I intermittency. (2) Even though such motion is chaotic (in the sense
of showing sensitivity to initial conditions), the Lyapunov exponent can be
close to zero if the duration of the laminar phase greatly exceeds that of the
chaotic bursts. Local quantities, on the other hand, provide a more detailed
description of the dynamics since they probe the motion on short enough
time-scales to distinguish the different states that the system passes
through. In such situations, distributions of local Lyapunov exponents
(LLEs), namely the value of the Lyapunov exponents over finite segments
of a trajectory, provide a better probe of the underlying nonuniform
attractor. (10, 11) In particular, the local Lyapunov exponent can be negative
even when the global Lyapunov exponent is positive (as on a typical
chaotic attractor) or vice versa (on strange nonchaotic attractors). (12)

This paper is concerned with the study of intermittent dynamics in
terms of the distribution of LLEs. We show that in intermittent systems,
there are significant finite-size effects that lead to a departure from the
general theory (11, 13) for LLEs in typical chaotic dynamical systems. Thus,
the LLE distributions are markedly non-Gaussian, regardless of the actual
type of intermittency, being characterized by exponential asymmetric tails.

Understanding the origin of these tails is the main focus of the present
study. Indeed, in a variety of other contexts wherein intermittency plays a
major role (as for example at the onset of turbulence), it is well-known (14)

that quantities such as velocity distributions show exponential behavior.
We provide a heuristic explanation for the existence of such fat-tailed dis-
tributions, and also give a phenomenological theory which appears to
satisfactorily account for the exponential tails. Details of the theory are
given in Section III of this paper. The dynamical systems considered here
are mainly discrete maps in 1-dimension which have been extensively
studied in the context of intermittency. In the next section we define the
various quantities such as Lyapunov exponents, LLEs and their distribu-
tions, and examples of these quantities at intermittencies. We conclude in
Section IV with a summary and discussion of our results.

2. INTERMITTENT DYNAMICAL SYSTEMS

2.1. Lyapunov Exponents and their Distributions

Lyapunov exponents measure the rates at which volume elements in
phase space expand or contract along an orbit and provide a classification
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of the nature of the dynamics. (15) For an ergodic system in d dimensions,
there are d Lyapunov exponents, which are independent of almost every
initial conditions on the attractor except for a measure zero set of points. (16)

Integrable conservative systems have all Lyapunov exponents equal to
zero. If one or more exponent is positive, the dynamics is chaotic, and
nearby trajectories diverge exponentially from each other. (17) When the
largest Lyapunov exponent is negative, then nearby trajectories converge,
and the dynamics is stable. (18)

The dynamical systems we consider here are 1-dimensional mappings
of the interval onto itself, defined by

xn+1=f(xn) (1)

where f(x) is a differentiable or piecewise differentiable function. The
Lyapunov exponent for this system, L, is given by

L= lim
N Q .

lN= lim
N Q .

1
N

C
N

i=1
ln :df(xi)

dx
: (2)

where lN is the N-step finite time local Lyapunov exponent. Note that in
1-dimension LLE’s are simply sum of local stretch factors, given by
ln |f −(x)|. For chaotic dynamics, instantaneous LLEs (namely the case
N=1) can be considered as random independent and identically distributed
variables. LLEs are fluctuating quantities and depend on initial conditions.
Their probability density, however, is stationary, with respect to the invariant
measure for the dynamics and is defined by

P(N, l) dl=probability that lN lies between l and l+dl. (3)

For hyperbolic systems, a general argument (11, 17) following the central limit
theorem (19) gives

P(N, l) ’ exp(−NG(l)) (4)

with G(l) having a quadratic maximum. Note that this does not constrain
the form of the distribution away from the maximum, and a variety of
behaviours in the tail of the distribution can be consistent with the limiting
behaviour as N Q ., when the distribution will tend to a d-function
centered on L

P(N, l) Q d(l − L). (5)
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There are, however, departures from this universal behavior when the
dynamics is nonhyperbolic. One prominent example is that of the quadratic
logistic map (9, 20)

xn+1=axn(1 − xn) (6)

at the Ulam point, a=4 when L=ln 2, P(N, l) has a cusp and the form of
the distribution is approximated by (9)

P(N, l)=
N
p

exp(−N |l − L|)
[1 − exp(−2N |l − L|)]1/2 . (7)

2.2. Examples

The form of P(N, l) at intermittency is best illustrated by examples.
Type I intermittency (1) in the logistic map, Eq. (6) occurs immediately prior
to the tangent bifurcation at a=at=1+`8. We examine the dynamics at
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Fig. 1. The distribution of finite time Lyapunov exponents for the logistic map near the
tangent bifurcation at at=1+`8. (a) The distribution of stretch exponents, namely l1 at
a=at − 10−5. The arrows indicate the values of stretch exponents corresponding to the period
three orbit at at. (b) The distribution of LLEs for N=102. The curve marked L gives the
(Gaussian) distribution of those LLEs which come entirely from the laminar phase and that
marked C is the distribution of LLEs entirely within the chaotic region.
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a=at − E, E=10−5. The stretch exponents, l1, have the density shown in
Fig. 1(a). (At a > at, when the dynamics is on the period 3 orbit, the
density is a set of d-functions at the three values indicated by arrows on the
axis in Fig. 1(a).) By averaging these stretch exponents over a finite portion
of a trajectory, one obtains finite-time Lyapunov exponents. Shown in
Fig. 1(b) is the LLE distribution at the same value of a=at − E. Even for
this relatively large value of N, the distribution of P(N, l) is highly asym-
metric with a distinct exponential tail. As shown in ref. 9, the total density
can be decomposed into portions coming from trajectory segments that are
entirely in the laminar part or entirely in the chaotic burst (the dotted lines
in Fig. 1(b)), with the exponential portion of the distribution arising from
trajectory segments that have both dynamics.

A similar asymmetric distribution arises from the dynamics of the cusp
map, (21)

f(x)=1 − 2 |x|1/2 x ¥ [ − 1, 1] (8)

which has a marginal fixed point at x=−1. The dynamics is largely
chaotic except when the trajectory is trapped in the vicinity of the marginal
fixed point at x=−1, and therefore the non-Gaussian tail of the distribu-
tion of LLEs is to the left of the mean; see Fig. 2(b).

One can formally build up the distribution P(N, l) if the invariant
density is known exactly. (9) For the logistic map, the invariant density is
not known for parameter value at, though for the cusp map it is (21)

r(x)=(1 − x)/2. One map which shows intermittency and for which the
invariant density is given exactly by

r(x)=
xa(1 − x)b

B(a+1, b+1)
(9)

where a, b > − 1, and B is the beta function,

B(a+1, b+1)=F
1

0
xa(1 − x)b dx. (10)

can be obtained by inversion. (22) For parameters a=−0.62 and b=−0.4,
the implicit map f(x) has intermittent dynamics and its LLE distribution
shown in Fig. 2(a) also has the characteristic exponential tail.

In on-off intermittency, (5) the ‘‘off ’’ state is nearly constant. The dynamics
typically is in this state for long durations, moving to the ‘‘on’’ state when
it displays intermittent bursts, and returning to the off state rapidly. The
basic requirement for on-off intermittency is that the system possess an

Non-Gaussian Fluctuations 287



0 0.2 0.4 0.6 0.8

0.1

1.0

10.0
P

(1
00

,λ
)

0 0.2 0.4 0.6 0.8

0.1

1.0

10.0

–0.65 –0.15 0.35
λ

0.1

1.0

10.0

P
(1

00
,λ

)

0.26 0.3 0.34 0.38
λ

1.0

10.0

100.0

(a) (b)

(c) (d)

Fig. 2. The characteristic probability densities for intermittent dynamics in (a) the beta map
at parameter value a=−0.62 and b=−0.4 (Eq. (9)), (b) the cusp map (Eq. (8)), (c) the driven
logistic map at parameter value a=2.8 (Eq. (11)) and (d) the logistic map at the band-
merging crisis (Eq. (6)), at a=3.6785735104284. The arrow in each figure points to the value
of corresponding asymptotic Lyapunov exponent.

invariant subspace which can be made unstable; (23) an example is the driven
logistic map (24)

yn+1=zn yn(1 − yn) (11)

where zn=axn and xn is a uniform random variable in the interval [0,1].
For a=2.8, this map shows on-off intermittent behavior, and the corre-
sponding distribution of LLEs (Fig. 2(c)) also has the characteristic expo-
nential non-Gaussian tail.

The final example of intermittency shown here in Fig. 2(d) is that
which occurs in the neighborhood of crisis phenomena. (17) Recall that at
crises, there is an abrupt change in the phase space volume; this can be
caused by collision of a chaotic attractor with an unstable periodic orbit at
the so-called band-merging crisis. An example of such dynamics obtains in
the logistic map, Eq. (6) at a % 3.678... . (25) Here both the states between
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which the dynamics switches have chaotic dynamics, and again the resulting
LLE distribution has an exponential tail.

3. MODELING

When the invariant density is known exactly (as in some of the
examples above), then it is in principle possible to derive the exact distri-
bution P(N, l) though the resulting algebra is not always very transparent.
Given a map f(x) and its invariant density r(x) the distribution for the
case N=1, namely the stretch exponent, is obtained by inverting the
relationship

P(1, l)=r(x) :dx
dl
:=r(x) |f(x) −|. (12)

For N > 1, P(N, l) must be calculated recursively. Since lN is known in
terms of x implicitly, it will therefore satisfy an equation of the form

exp NlN=G(x) — D
N

i=1

d(f (i)(x))
dx

. (13)

The functional form of the resulting G will depend on the map under con-
sideration; for polynomial f, G is polynomial as well. Summing over all
real roots of the equation exp(Nl) − G(x)=0, one finally obtains (9) the
distribution as

P(N, l)=N exp(Nl) C
roots

r(x)
|G −(x)|

. (14)

This program is limited by the necessity of knowing r(x) analytically.
For maps of the form 1 − 2 |x|z, where 1

2 \ z \ 1, x=−1 is a marginal
fixed point, so that the dynamics is intermittent. The invariant measure is
not known analytically except for the case z=1

2 , when it is given by
r(x)=(1 − x)/2. As can be easily seen, the 1-step LLE has the distribution
P(1, l) ’ exp(−2l). Using Eq. (14), we obtain the N-step LLE distribution
for low values of N by following the procedure outlined above; this is
shown in Fig. 6 for N=5. Although this approach is exact, for actual
application the necessity of knowing large number of roots for higher
values of N limit its utility. In the general case, the distribution for the
1-step Lyapunov exponent appears (numerically) to have the form
P(1, l) ’ exp(−4zl), which suggests that a similar analysis will also give
rise to exponential tails for larger N.
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Below we present a phenomenological theory of LLE’s at intermit-
tency. In any computation of a finite time Lyapunov exponent lN is com-
puted as the average of a set of N stretch exponents (l1’s), some Nl of
which may come from laminar motion and Nc=N − Nl from chaotic
motion. (26) If the entire portion of the trajectory falls within the laminar or
chaotic state, the resulting distribution of such LLE’s is Gaussian, viz.

P(l, ma, sa)=
1

`2ps2
a

exp 5−
(l − ma)2

2s2
a

6 (15)

where the subscript a=l, c labels the distinct state (laminar or chaotic)
involved in the intermittency.

The distributions of the stretch exponents, the one-step LLE is itself
not Gaussian: see Fig. 1(a) for a typical case. For the case of lN arising
from Nl steps in the laminar and Nc steps in the chaotic region (as in the
trajectory illustrated in Fig. 3), we make the assumption that the resulting
distribution is also Gaussian

P(nl, nc, l)=
1

`2pseff

exp 5−
(l − meff)2

2seff

6 (16)
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Fig. 3. Time series for typical intermittent dynamics. Any randomly chosen part of the
trajectory of length N will be composed of parts coming from the laminar phase (N1) and
parts coming from chaotic phase (N2).
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but with weighted mean and variance

meff=nlml+ncmc (17)

seff=nlsl
2+ncsc

2 (18)

where na=Na/N. The total distribution form for the intermittent dynamics
comes from the composition of different Gaussian distributions given by
Eq. (16) with nl varying from 0 to 1. So the final expression for P(N, l) is
given by

P(N, l)= C
1

nl=0
c(nl, nc) P(nl, nc, l) (19)

where the coefficient c(nl, nc) is

c(nl, nc)= lim
N(N) Q .

N(nl)
N(N)

(20)

N(nl) being the number of times a given nl is realized in the dynamics, and
N(N) is the total number of samples taken, with

C
1

nl=0
c(nl, nc)=1 (21)

to preserve normalization.
In the limit N Q ., P(N, l) does indeed asymptote to a Dirac

d-function although this is not immediately obvious from Eqs. (16) and
(15). With increasing N, the variances, sa decrease sharply, as, therefore,
do the seff. Further, the support of c(nl, nc) also decreases sharply, and one
can (experimentally) verify that the resulting distribution is narrower and
increasingly sharply peaked with increasing N. A plot of c(nl, nc) for the
case of the logistic map at Type I intermittency is shown in Fig. 4(a).

The above formalism can be tested on the examples of intermittent
dynamics shown in Section II. Shown in Fig. 4(b) is the predicted distribu-
tion (the dashed line) obtained from the formula Eq. (19). Appropriate
values of sl, sc, ml, and mc were obtained for the case of intermittency at
a=3.82842 in the logistic map, for N=102. As can be seen the agreement
is good, particularly in the region of the exponential tail.

This general procedure can be carried out for the other cases as
well. Comparisons are made (shown in Figs. 5(a)–(d) respectively) for the

Non-Gaussian Fluctuations 291



0 0.2 0.4 0.6 0.8 1
nL

1e–05

0.0001

0.001

0.01

0.1

1

C
(n

L,
 n

C
)

(a)

0.01

0.1

1

10

100

-0.2 0 0.2 0.4 0.6

(b)

λ

P
(1

02
,

λ
)

Fig. 4. (a) Plot of c(nl, nc) versus nl for the logistic map. (b) Numerical results (solid lines)
compared with the analytic expression obtained from Eq. (19) (dotted lines).

distributions for the beta map at parameter value a=−0.62 and b=−0.4,
for the cusp map, as well as for the cases of on-off and crisis induced
intermittencies.

4. DISCUSSION

The contrasting information available from global and local indicators
of the dynamics is most strongly apparent in intermittent systems. Global
quantities are, typically, slowly convergent, and the extreme variability of
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Fig. 5. Comparison of numerical densities and that obtained from Eq. (19) for intermittent
dynamics (a) in the beta map (at a=−0.62 and b=−0.4) (Eq. (9)), (b) the cusp map
(Eq. (8)), (c) the driven logistic map at a=2.8 (Eq. (11)) and (d) at band-merging crisis in the
logistic map (Eq. (6)) at a=3.6785735104284.
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Fig. 6. Comparison of numerical density (dots) and the analytic expression Eq. (14) (solid
line) for LLEs in the cusp map (Eq. (8)), for N=5.
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the underlying attractors are best described by local quantities which offer
a more detailed picture of such systems.

In the present paper we have examined the distribution of local Lyapunov
exponents for intermittent dynamical systems. These offer a more detailed
description of the dynamics, and are also very relevant in treating experi-
mental data since by its very nature, any measured exponent is a finite-time
quantity. (27) We find that all intermittent systems have characteristically
asymmetric distributions which are markedly non-Gaussian and with a
distinct exponential tail. We give a heuristic explanation for the origin of
these tails, and demonstrate the validity of this theory for a number of dif-
ferent examples of intermittency, ranging from Type I, where the motion
switches from laminar to chaotic dynamics, to crisis-induced intermittency,
where the motion switches between two chaotic states.

The form of the asymmetric and fat-tailed LLE distribution is sugges-
tive of extreme-value statistics (28) although the justification for using such a
form is not very clear. A plausible argument for the origin of extreme value
statistics in the case where the intermittency switches between a laminar
and a chaotic state is as follows. Consider a symbolic encoding of the
dynamics in a binary alphabet, with 0 representing the laminar state and 1
the chaotic. Then a finite-time segment of the orbit (a ‘‘word’’) is a binary
string of 0’s and 1’s, with most words having a larger proportion of 0’s. If
the segment is completely confined to the laminar state, the corresponding
word is entirely made of 0’s, and the LLE will necessarily be clustered
around the mean. If the segment includes a chaotic burst, then the word
has some 1’s as well, and the value of the LLE must necessarily be much
larger. In a distribution this would be an extreme value, and hence the tail
of the LLE distribution displays extreme-value statistics. The symbolic
encoding also permits the computation of Renyi entropies for the intermit-
tent dynamics, (21) and we have observed that there is a dynamical phase
transition in the spectrum of entropies in all cases of intermittency. (29)

Very recently Tribelsky (30) has obtained probability distributions for
finite sums of random, arbitrarily correlated variables. As shown there (30)

correlations generically give rise to fat-tailed distributions, and thus there is
some overlap in the regime of applicability with the present work. The
correlations that obtain from intermittent dynamics have not been expli-
citly considered, but it may be possible to treat this case within the same
framework. In addition to local Lyapunov exponents, a number of derived
quantities in intermittent dynamical systems also show distributions with
exponential tails. (31, 32) The generality of exponential tails in a number
quantities in dynamical phenomena known to be intermittent such as the
onset of turbulence, for instance (14) could be indicative of the fact that the
underlying mechanisms in these phenomena share some commonality.
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